光纤激光器焊接机

使用说明书

地址:深圳市宝安区福永镇立新路2号

电话: 0755-29191116 传真: 0755-29191100

网址: www.herolaser.com

全国免费咨询热线: 400-6899-119

目录

目录
1. 设备简介
3. 应用领域
4. 设备的现场安装要求
4.1 场地要求
4.2 环境要求
第一章 整机结构安装说明
1. 整机结构7
2. 面板说明
2.1 激光器主机柜8
2.2 自动工作站8-9 3 开关机流程9
第二章 激光器安全部分
1. 一般安全指导
2. 安全建议
3. 光学安全1
4. 用电安全
5. 环境安全
6. 光纤终端光学输出
第三章 冷水机部分
1. 冷水机结构图
2. 冷水机性能参数
3. 温度控制器说明
第四章 软件操作部分
1. 软件简介
1.1 软件特点
1.2 主要功能
2.1 图形编辑模式
2.2 采集编程模式21-22
3. 编辑
3.1组合和分离组合
3.2 自动排序23-25 3.3 手动排序25

钻镭激光, 给惩更适合的

4. 绘制	25–26
4.1点	. 26-27
4. 2 直线	. 27-28
4.3 方形	28
4.4 圆形	28
4.5 多边形	28
4.6 椭圆	28
4.7字符	29
4.8 定时器	29
4.9 输入控制器	29
4.9.1 绘制输入控制器	. 29-30
4. 9. 2 设置输入控制器	30
4.9.3 多个输入控制之间的关系	30
4. 10 输出控制器	
4. 10. 1 绘制输出控制器	
4. 10. 2 设置输出控制器	
4. 11 导入矢量文件	
4. 11. 1 导入矢量	
4. 11. 2 设置说明	
5. 执行	
5.1 路径优化	. 34-35
5. 2 预览	
5.3 编译	
5.4 执行	
5.5 暂停	
5.6 复位	
5.7 定位	
5.8激光	
5.9 光闸	37
5. 10 气阀	
5. 11 指示	37
5. 12 视频指示	37
5.13 边框检测	37
6. 工具	37–38
6.1 视频工具	38
6.2 参数配置	39
6.2.1 系统参数	
6. 2. 2 设备参数	. 40-41
6. 2. 2. 1 回零方式	. 41-42
6. 2. 2. 2 回零速度	42
6. 2. 2. 3 轴参数	
6. 2. 3 速度控制	
6.2.4输入端口设置	. 44-45
6. 2. 5 输出端口设置	. 45-46

钻镭激光, 给您更适合的

6. 2. 6 工程参数	46
6. 2. 6. 1 气阀	
6. 2. 6. 2 光闸	47
6. 2. 6. 3 工作延时	47-48
6. 2. 6. 4 工作模式	48
6.3 激光设置	48
6.3.1 激光参数	49-50
7. 视图	50-51
7.1 对象属性栏	51-52
7.1.1 图形对象列表	
7.1.2 基准坐标	53
7.1.3 属性参数	53-54
7.1.4 变换	54
7.1.4.1 旋转	
7.1.4.2 移动	
7.1.4.3 镜像	57
7.1.5 属性	57
7.1.6列阵	58
7.2 光笔参数栏	59
7.2.1 光笔基本参数	59-60
7.2.2 光笔高级参数设置	60-61
7.3 控制面板	61-62
7.4 右键快捷菜单	63-64
8. 帮助	64
8.1 授权	64
8.2版本信息	64-65
9. 采集编程	65
9.1 采集和拟合	65-66
9. 2 快捷键操作	

前言

1、设备简介

光纤激光器是指用稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级"粒子数反转",当适当加入正反馈回路便可形成激光振荡输出。

光纤激光器的光纤质量好,连续功率大,适用于深熔焊。连续激光通过调制可提供激光脉冲,从而获得高峰值功率和低平均功率,适用于需要低热输入要求的焊接。由于高功率激光的调制频率高达 10KHz,因而能够提高脉冲焊接的产能。光纤输送方式使激光能够灵活地集成在传统工作站、振镜头、机器人和远程焊接系统内。

2、设备特点

- 1、电光转换效率高(可高达 20%[~]30%以上);
- 2、寿命长(可达10万小时以上),免维护;
- 3、光束质量好,功率稳定性好,焊缝细,深度大;
- 4、体积小, 无耗材, 运行成本低;
- 5、光纤传输,能够灵活地集成在工作站、机器人和自动化等设备上使用。

3、应用领域

适用于航天、航空、汽车、动力电池、机械制造、金属五金、船舶、化学化工以及生活用品等行业广泛应用。

4、设备的现场安装要求

4.1、场地要求:

设备应安装于不小于 15m²的独立空间(视实际配套而定)。地面水平、硬实、防震,门口粘贴激光防护标识。

4.2、环境要求:

- A、操作室内照明状况良好,设备周围 20 米内应保证没有强振动、强电磁场设备的干 扰。
- B、要求环境温度处于 15° C $^{\sim}$ 30 $^{\circ}$ C 之间,以保证设备处于最佳工作状态。要求室温较稳 定,加装空调。
 - C、相对湿度应处于 70%以下, 较干燥。
- D、为保证设备操作室空气清洁,客户应在设备安装调试后,根据现场情况自行建立抽 风排烟系统。

4.3、电力需求:

供电电源要求一定要有可靠接地,单独接地线,如果电源无接地线则不能开机生产,以 免静电对机器造成损害

- A、电源要求单相交流 220V±5%, 20A 以上; (如客户供电电源不稳定,需加装 4.5KVA 以上 的单相 220V 稳压器。)
- B、稳压电源输入端需安装 30A 以上的单相空气开关。
- C、接地电阻不大于 4 欧姆。

第一章 整机结构、安装说明

1、整机结构 激光焊接头 观察系统 HEROLASER 三维自动工作站 激光器主机柜 运动平台 **HEROLASER HEROLASER**

(仅供参考,以实物为准)

2、面板说明

2.1、激光器主机柜

总电源:整机上电总开关,当前打上为ON,打下为OFF。(处于机柜后面)

电源: 钥匙右旋 90 度成水平状态, 主机柜上电;

急停:紧急情况下,按下按钮,主机柜断电,解除时,右旋弹起复位;

启动:按下启动按钮,激光器启动,绿灯亮;

红光:按下红光按钮,红色指示光打开,红灯亮;

使能:按下使能按钮,激光器处于待发射状态,绿灯亮;**复位**:若激光器报警时,按下复位按钮,激光器复位。

2.2、自动工作站

地址:深圳市宝安区福永镇立新路2号 电话: 0755-29191116 传真: 0755-29191100 电源: 钥匙右旋 90 度成水平状态, 自动工作站上电;

急停: 紧急情况下, 按下按钮, 本工作站断电, 解除时, 右旋弹起复位:

电脑:按下电脑按钮,电脑主机启动,等同电脑上开机按钮;

转换: 暂时备用。

3、开关机流程

开机前准备

- 1、检查所有电源线接线正确;
- 2、检查所有连接信号线正确;
- 3、检查水箱是否注满水,水管连接是否正确;
- 4、检查激光焊接头部分固定是否正常。

开机流程

- 1、闭合总电源, 使主机柜处于待电状态;
- 2、钥匙右旋90度成水平状态,主机柜上电,水箱上电(确认水箱开关打开,水流正常无漏水现象);
- 3、自动工作站上电, 开电脑, 打开软件;
- 4、等待约25秒以后,按下主机柜启动按钮启动激光器;
- 5、按下红光按钮,激光器有红色指示光出;
- 6、在电脑软件上打开已绘好的图形或绘制图形;
- 7、在主机柜上按下使能按钮,可以出激光焊接。

关机流程

- 1、关闭主机柜使能按钮;
- 2、关闭主机柜红光按钮;
- 3、关闭主机柜启动按钮(若是点动按钮,不用理会);
- 4、关闭主机柜钥匙开关;
- 5、关闭主机柜总电源:
- 6、保存软件图形,关闭软件、电脑;
- 7、关闭自动工作站钥匙开关。

第二章 激光器安全部分

1、一般安全指导

📤 警告:必须避免镜面反射或者是使其最小化,在本激光波长下,这些反射是不可见的。

镜面反射

在激光附近不同角度经常有大量的二次激光束产生。这些激光束就是镜面反射, 是在当激光从主光束的光滑表面反射出去的时候产生的。虽然这些二次激光束的 能量比从激光中散发出来的总能量要弱, 但是强度足以对眼睛和皮肤以至于激 光周围的物件造成伤害。

设备和解决方法

在设备中的感光元件,诸如视频摄像机,光电倍增管和光电二极管也可能因为激 光光线而受到损坏。

⚠ 注意:激光强大到足以切割或焊接金属,灼伤皮肤,衣物和油漆。此外,还可以引燃 挥发性物质,如酒精,汽油,乙醚等溶剂。

溶剂或其他易燃材料和气体的暴露必须避免,而且必须远离设备。

2、安全建议

建议您按照下面的步骤安全地操作激光:

- ① 当激光器运行时,切勿直视激光输出位置:
- ② 避免把激光器和所有光学元件放置在视线水平;
- 提供激光束机箱:
- ④ 确保所有的个人防护装备(PPE)是适合于贴在产品上的激光安全标签 中列出来的输出功率和波长范围;
- ⑤ 在屋子里使用激光时,需有门联锁装置控制入口。张贴警示标志。当激 光运行时,对激光安全培训过的人员才可进入;
 - ⑥ 避免在黑暗的环境中使用激光:

- (7) 如果激光没有耦合入光纤或者连接到光学输出连接器,禁止激光使能;
- 图 诸如:架设光纤或者将准直器安装到到夹具上等时候,必须关闭激光。 如有必要,请先使用低功率输出,然后逐渐增加;
- ⑨ 当激光工作时,请不要安装光纤头或准直器: 如果设备没有按照说明书中的方式操作,提供的保护装置可能会受损,激光器质 保将失效;

3、光学安全

注意:如果设备的输出需要经过有抗反射涂层的镜片,请确保镜片质量好,干净。有关 清洁说明,请参阅"光纤连接器检查和清洁指南"。

在准直器组件的端部上的灰尘可以烧坏透镜和损坏激光。

使用激光时, 烫热或者融化的金属碎片会出现, 请谨慎操作。

4、用电安全

📤 注意:输入到激光器的电压有潜在的致命性。所有的电线和连接线应被视为是危 险的。电线,连接线和设备外壳的所有部分都应被视为危险的。

- 1. 请确保该仪器是通过交流电源线的保护导体接地。从保护接地端子到保 护接地导体的任何中断都可能导致人身伤害;
 - 2. 与正确接地的电源线链接设备:
- 3. 为了避免将来发生火灾,如果可以的话,只用相同类型和额定值一样的 线缆替换保险丝。禁止使用其他保险丝或材料;
- 4. 设备供电之前,请确保使用的是正确的交流电电压,否则可能会损坏设 备;
 - 5. 接通电源之前,请确保链路电压在规定范围:
- 6. 产品内部没有可维修的部件。为了防止触电,请勿卸下机壳。任何与产 品的篡改将导致保修期无效:

5、环境安全

注意:切勿直视正在运作的光纤或准直器。请确保操作该设备的时候,一直佩戴合适的 激光安全眼镜。

为确保安全的工作区域,适当的外壳是必需的。这些包括但是不局限于激光 安全标标识,联锁装置,恰当的报警装置,培训和安全手册。另外,安装输 出部件远离视线水平也很重要。

▲ 注意:确保所有的个人防护装备(PPE)是适合于贴在产品上的激光安全标签中列 出来的输出功率和波长范围。

激光和物件的相互作用也会产生高强度的 UV 光和可见光辐射。请确保激光 防护罩能够及时有效的保护眼睛免受可见光的辐射。

⚠ 警告:除非小心操作此设备,否则激光是有可能损坏的。

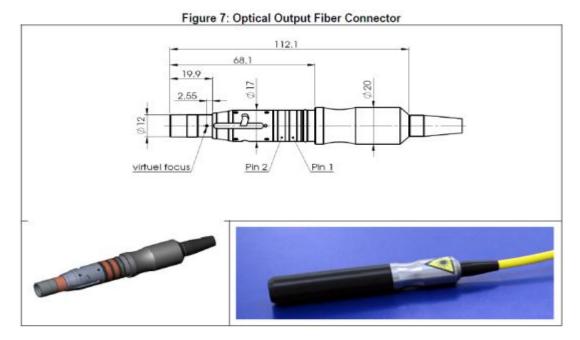
请勿将设备暴露在高湿度环境下(>95%湿度);

⚠ 水冷的激光器禁止在低于相对环境零点的温度运作。(见图 2)

Figure 2: Dewpoint Table

		AMBIENT DEWPOINT ¹ Maximum Relative Humidity									
Room Temperature	10%	20%	30%	40%	50%	60%	70%	80%	90%	959	
10 °C	-20	-11.9	-6.8	-3.0	06	2.6	4.8	7.6	8.4	92	
15 °C	-16.4	-7.9	-2.4	1.5	4.7	7.3	9.6	11.6	13.4	14.2	
20 °C	-12.5	-3.7	1.9	6.0	9.25	12.0	14.4	16.4	18.3	19.2	
25 °C	-8.7	0.5	6.2	10.5	13.8	16.7	19.1	21.3	23.2	24.1	
30 °C	-5.0	4.6	10.5	15.0	18.4	21.4	23.9	26.2	28.2	29.1	
40 °C	2.6	12.7	19.1	23.8	27.6	30.7	33.5	35.9	38.0	39.0	
50 °C	10.0	20.8	27.6	32.6	36.7	40.0	43.0	45.6	47.9	49.0	
			Lase	er Oper	ating T	empera	ture Ra	ange			

❖ 该设备可以有风扇主动散热。确保有足够的气流来冷却设备,覆盖通风孔的


任何物体或碎片必须随时移开;

- ❖ 高温环境下使用机器,会加速机器老化,提高阈值电流和降低斜率效率,如果设备过热,请勿使用,并致电提供援助;
- ❖ 确保工作区域有合理的排放设施。激光和工作物件相互作用产生的气体、火花、碎屑会造成另外的安全隐患;每周检查过滤介质,清洁或者更换(如有必要)。

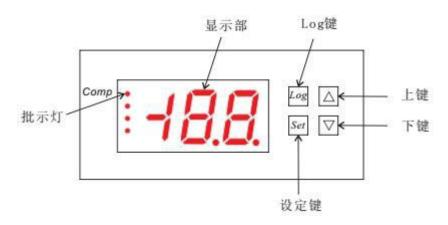
6、光纤终端光学输出

机器连接器

在不使用时,光纤端部连接器使用保护性的盖子(图 7),去遮盖或保护光学表面和安全系统的电引脚,在光纤传输中。当连接光纤线到光学头上时,必须移除保护盖。保护盖只有在进行光学清洗和装置适配器的时候,需要立即移除。

第三章 冷水机部分

1、冷水机结构图


- 1、隔尘网
- 2、加水口
- 3、温控表
- 4、开关
- 5、排水口

- 6、出水口
- 7、入水口
- 8、信号线
- 9、电源线
- 10、风扇

2、冷水机性能参数

型号型TYPE	C0100
电源POWER SUPPLY	AC220V/50Hz
总输入功率TOTAL POWER INPUT	1200W
冷却能力COOLING CAPACITY	2700W
压缩机COMPRESSOR	
制冷剂REFRIGERANT	R22
风扇电机功率FAN MOTOR POWER INPUT	2x36
温度控制范围TEM. RANG	5~35℃
温度稳定精度TEM, ABILITY	±2℃
水热交换器WATER EXCHANGER	不锈钢STAINLESS STEEL
泵功率PUMP POWER INPUT	250W
水流量WATER FLOWER	30L/MIN
保护功能ALARM AND PROTECT	2L/MIN 水流保护及温度保护
水箱TANK	
容积CUBAGE	10L
进出水口INLET AND OUTLET	4分管内螺纹
排污口DRAINAGE	4分管外螺纹
外形尺寸DIMENSION	

3、温度控制器说明

1、功能说明:

a. 运转:

水温到达设定温度时(ts),压缩机停止:温度回升至设定温度(ts)+设定温差时(td),压缩机启动。

b. 压缩机保护模式:

压缩机保护时间可由参数设定,压缩机停止时即开始计算时间。

c. 开机显示:

开机显示版本6秒后,显示库温及进入正常状态。

2、按键功能:

a. 设定模式:

开机后持续按住 Set 键 3 秒进入设定模式,显示"ts"且"Set"灯号闪烁。 在此设定模式下可按▲键或▼,切换参数代码依序为 tS、td、HS、LS、AU、AL、 Ad、AC、Ot 、OU。

b. 显示或变更参数值:

选择参数代码后,按Set 键显示参数值.

再按▲或▼键(可按住不放,参数值自动递增或递减)调整参数至适当值之后, 需再按下 Set 键

储存参数值,并回到参数代码显示.

选择"OU"参数后,再按Set键储存参数值后离开,并回到正常运转模式。

- c. 在设定模式下如果使用者在15秒内未按下任一键,即中止设定模式,储存参数值, 回到正常运转模式显示目前温度。
- 3、最高及最低温度记录:

当温度到达设定温度时,开始记录温度曾到达之最高或最低温度,随时按 Log 键可切换观看曾到达之最高或最低温度,假如按住 Log 键 5 秒,则记录值变更为目前冷水温度,并重新记录。

4、快速设定:

a. 使用者可透过简单的操作步骤来修改设定温度(ts),设定方法如下:

按住▼键3秒后进入设定模式,此时"set 灯号闪烁。

按▲或▼键来修改设定温度(ts)。

调整完毕后可按 Set 键或等待 5 秒未按下任一键,系统自动储存新的设定温度

值,并回到正常运转。

- 5、锁定参数:
 - a. 同时按 Set 键+ ▼两键三秒后,显示 L C表示设定参数已锁定。
 - b. 欲解除锁定可再同时按 Set 键+▼两键,显示UL表示锁定已解除。
- 6、回复原厂设定值:

送电前按住 Set + Log 两键后再送电即可回复原厂设定值(显示"rS"),等待2秒后自动重新开机。

- 7、LED灯号及故障/警告代码:
 - a. LED 灯号:

Comp: 压缩机运转时恒亮,压缩机停止时恒灭,在压缩机延迟启动保护时闪烁。

Defr: 在除霜状态时闪烁。

Alarm: 在故障或告警时闪烁。

Set: 在设定模式时闪烁。

- b. 故障代码:(发生下列情形时, 压缩机以运转 15 分钟停止 15 分钟模式持续运转)。
 - "EO"代表校正感温器故障。(送回原厂修理)。
 - "E1"代表水温感温器故障。(检查感温是否接好或更换感温器)。
 - "EE"代表参数记忆体异常。(重新送电,依原厂参数值运转)。
- c. 告警代码: (以下功能需水温第一次到达设定温度时, 才启动)。
 - "UA"代表冰水温度已超过温度上限。
 - "LA"代表冰温度已低于温度下限。
- d. 告警输出: (输出开1秒/关1秒)

当告警延迟时间到达时,告警输出 ON,使用者可按▼键暂时关闭告警输出,若再一次▼键时,则告警输出 ON。

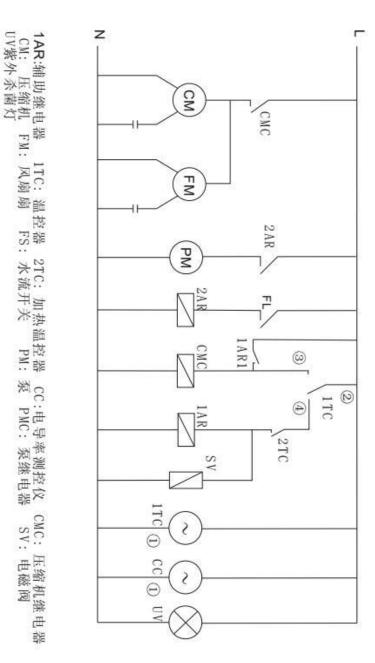
8、103 参数清单:

参数	功能	设定	范围	原厂 设定 值	单 位	说明
ts	设定温度	LS	HS	4	$^{\circ}$	压缩机停止温度。
td	设定温差	1	10	4	$^{\circ}\mathbb{C}$	ts+td 为压缩机启动温度。
HS	使用者 设温上线	ts	45	45	时	限定 User 可设定最高温度。
LS	使用者 设温下线	-40	ts	-10	${\mathbb C}$	限定 User 可设定最低温度(设定时需考虑压缩机冷冻能力至少要可达到 LS)。
AU	告警 温度上限	AL+1	55	45	${\mathbb C}$	需水温第一次到达设定温度,才启动此功能。当水温≧AU时,"UA"及库内温度交互显示。
AL	告警 温度下限	-45	AU-1	-20	${\mathbb C}$	需水温第一次到达设定温度,才启动此功能。当库内温度≦AL时, "LA"及库内温度交互显示。
Ad	告警延迟	0	99	15	分	告警延迟输出时间,若设为0时则无延迟时间,直接打开告警输出。
AC	压缩机延 迟启动保	0	30	1	分	压缩机延迟启动保护。若设为 0 则无延迟时间,但第一次送电时压

	护					缩机会延迟1分钟后再启动。
TO	温度校正	-12	12	0	$^{\circ}\mathbb{C}$	温度校正。

4、冷水机电路图

1TC


9 (10)

Sensor

FS

2AR

第四章 软件操作部分

1、软件简介

运动控制卡软件 MotionDSP 是一款用于计算机数字控制 (CNC) 领域的自动控制系统 软件,该软件提供高精度复杂的轮廓控制和速度控制,同时具备丰富的逻辑控制扩展能力, 广泛应用于激光焊接、激光切割以及加工中心等数控加工行业。

1.1、软件特点

MotionDSP 运动控制软件是一款采用面向对象的编程技术、运用至顶向下的研发流程 开发,专门应用于激光焊接行业的专业运动控制软件,该软件的特点有:

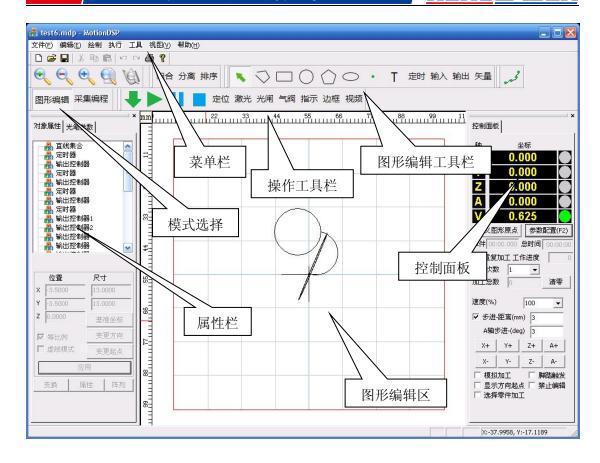
- 1) 纯绿色软件,直接复制到计算机上即可运行,安装过程简单;
- 核心算法经过优化处理,采用特殊技术,对计算机的 CPU 和内存资源要求极低, 无论采用什么样的计算机配置, 只要满足最低配置条件, 即可保证系统高效稳定运 行,获得相同的加工效果。
- 3) 软件采用 IDE 集成工作环境方式,主界面集成图形编辑、运行监控、采集编程、 运动控制于一体,布局简洁专业,可有效提高工作效率:
- 4) 外部信号处理可用软件、硬件相结合的方式,响应速度快:
- 5) 采用开放式架构,提供第三方开发接口,扩展能力强,可配合工艺流程的改进不断 增加新的功能:
- 6) 提供多语言显示(中文简体、英文等),支持国际化应用。

1.2、主要功能

MotionDSP 运动控制软件提供的功能如下:

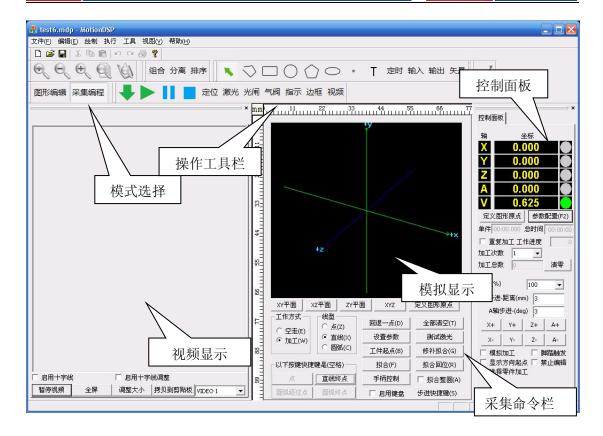
- 1) 集成基本的图形编辑功能,可以直接绘制各种几何图形、输入文字,导入 DXF 等 矢量格式文件:
- 2) 图形编辑支持复杂对象的组合和分解,可单独调整每个对象的起刀点、运动方向, 对象加工的顺序等;
- 3) 支持图形对象的旋转、拉伸变形、移动等功能;

- 4) 支持多达8组不同的光笔,每组光笔可单独设置加工速度、加速度,各种开光、 关光延时、功率等工艺参数,满足同一文件复杂对象的不同的加工需求;
- 5) 提供拐角速度变化预处理功能,实现运动轨迹中拐角的平滑过度;
- 6) 提供示教编程功能,可以根据采样点拟合各种图形,包括直线拟合、圆弧拟合、空 间圆弧拟合、点输出等;
- 7) 支持分段拟合,可对每个分段采样的点序列进行单独拟合,拟合后合并到原有图纸 中,节省采样编程时间,方便修改编辑;
- 8) 提供丰富的通用输入端口、输出端口控件,可指定外部输入端口的触发方式,可指 定输出端口的电平状态或脉冲;
- 9) 实时监控运动平台状态,包括各运动轴的坐标、插补速度、加工位置、加工进度、 限位开光状态等信息;
- 10)视频监控集成在软件主控界面中,可在同一显示器中显示,可全屏显示视频、视 频 显示无延时。


2、界面说明

MotionDSP 软件主界面采用集成工作环境,包括菜单栏、工具栏、控制面板和主工作 区。其中主工作区内容根据软件运行的工作模式的不同而不同,MotionDSP 软件有两种工 作模式: 图形编辑模式和采集编程模式,不同工作模式下主界面如下:

2.1、图形编辑模式


在图形编辑模式下,主工作区左边有对象属性栏和光笔属性栏,中间区域可以进行图形 编辑绘制、导入其它软件绘制的矢量图形等,光笔属性栏可以指定图形对象的加工笔号,在 对象属性栏可以选择特定的图形对象,并修改对象属性。

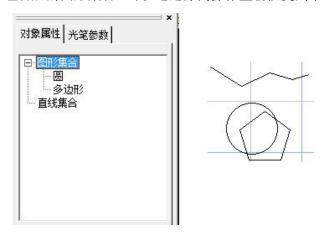
图形编辑工作完成后,可在此模式下编译运行程序,实时对加工进度进行监控。

2.2、采集编程模式

在采集编程模式下,可以打开视频窗口,实时显示工件运行的精密位置,中间区域采集命令区,通过使用采集编程的各种控制命令,采集工件的路径节点,并拟合成图形,用户可通过 3D 模拟显示窗口实时看到采样拟合后的线条轮廓。

3、编辑

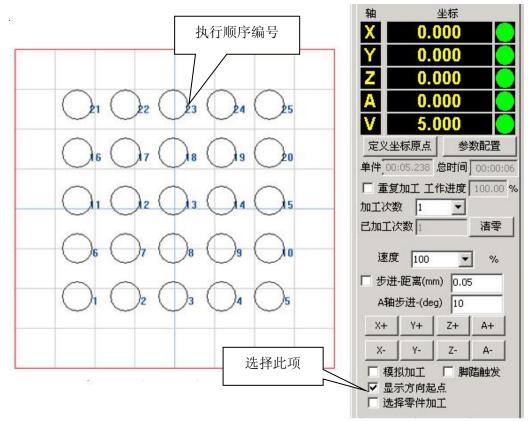
单击菜单中的【编辑】,即可打开编辑菜单功能。编辑菜单栏下主要有普通图形文件的通用功能,例如:撤销、恢复、剪切、复制功等,还有图形对象的组合和分离组合功能、自动排序和手动排序功能。【编辑】菜单如下:



深圳市铭镭激光设备有限公司 SHENZHEN HEROLASER FOLUPMENT CO. LTD. 地址:深圳市宝安区福永镇立新路2号 电话: 0755-29191116 传真: 0755-29191100 网址: www.herolaser.com 22 全国免费咨询热线: 400-6899-119

3.1、组合和分离组合

【组合】:将选中的多个图形对象,组合成一个整体。多个图形对象组合成一个整体后, 在对象属性栏中将视为一个图形集合,该图形集合展开后可以看到集合内的元素。任何对于 图形集合的属性修改操作,都将影响到图形集合中每一个元素。


【分离组合】: 组合后的图形集合,可以通过分离操作重新恢复到单个图形对象的状态。

上图的示例是:圆和多边形组合后,在对象属性栏里面显示出一个图形集合。

3.2、自动排序

图形输入完毕后,对象属性栏将每个图形对象排列成列表,系统运行的时候将按照列表至上而下的顺序依次执行,每个图形对象都有一个执行顺序的编号,通过选择主界面右下角【控制面板】上的【显示方向起点】选项,可以看到每个图形对象的执行顺序编号:

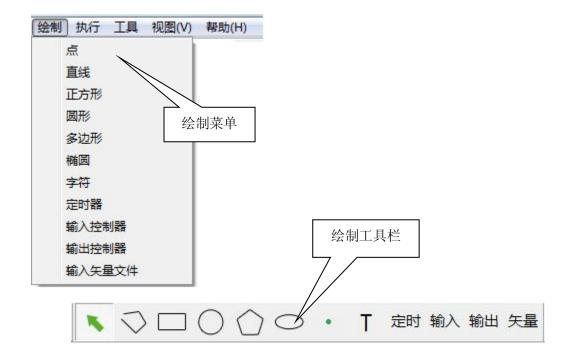
【自动排序】可以自动排列图形对象的执行顺序,按照加工工艺的需求优化执行的路径, 自动排序功能提供以下 5 种排序策略:

- X-snake: X轴向蛇形排列;
- X-zigzag: X轴向之字形排列;
- Y-snake: Y轴向蛇形排列;
- Y-zigzag: Y轴向之字形排列;
- Circle: 由中心开始环形排列。

使用【编辑】菜单下的【自动排序】子菜单的对应的排序功能,将弹出以下对话框:

其中【每排扫描宽度(mm)】指的是: 当选择自动排序后,软件会按指定的轴向扫描图纸中的每个图形对象,以确定图形对象所在的位置,扫描的宽度在这个对话框中设置,单位是毫米。扫描完毕后,软件根据扫描结果进行排序。

3.3、手动排序

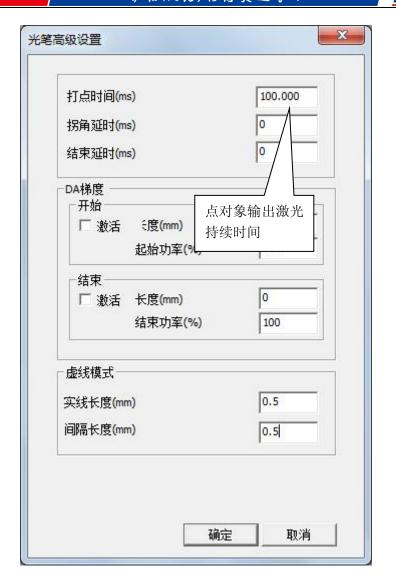

用户也可以自己手动指定某个图形对象的执行顺序编号。先在图形编辑界面中选中该图形对象,然后单击【编辑】菜单下的【手动排序】功能,将弹出以下对话框:

【旧编号】显示的是原有的执行顺序,在【新编号】后输入指定的编号,单击确定,该图形对象的执行顺序即可调整到新的编号,图形对象队列中后续的对象按原有的顺序依次向后调整。

4、绘制

单击菜单中的【绘制】,即可打开绘制菜单功能。绘制菜单主要功能提供基本几何图形的绘制,通过单击工具栏上的快捷按钮,也可以实现同样的绘制功能。【绘制】菜单如下

4.1、点


【点】对象一般用于点位运动控制中,运动平台首先运行到点对象所在位置,然后驱动 主轴在该点位置持续输出激光。

MotionDSP 软件点绘制功能,能够提供独立点绘制、连续点生成、单独输出脉冲三种 功能。

绘制独立的点

在【绘制】菜单下选择【点】,或者在工具栏上选择 』,然后在绘图工作区放置点 对象。

点对象输出激光的持续时间,在当前使用光笔的【高级设置】里设置,单击光笔参数栏 中的【高级设置】按钮,弹出光笔高级设置对话框,在【打点时间(毫秒)】输入框中输入 打点时间。

注意: 点对象输出激光的持续时间(打点时间),要大于激光电源的响应时间,否则 即便有开光信号输出,仍然无法获得正常的激光输出。

4.2、直线

绘制一个直线段对象

在【绘制】菜单中选择【直线】功能,或者在工具栏上单击。 , 进入直线绘制模式, 在图形编辑区单击直线起点处,然后将鼠标移动到直线终点处单击一次,绘制出一条连接起 点和终点的直线,然后单击鼠标右键退出【直线】模式。

绘制连续直线段对象

在使用【直线】功能绘制直线时,可以连续移动到指定位置单击鼠标左键,绘制出连续 的折线,绘制完最后一段直线后,单击鼠标右键退出【直线】模式。

4.3、方形

在【绘制】菜单中选择【方形】功能,或者在工具栏上单击。 模式。方形绘制首先在图形编辑区选择矩形的第一个对角点,然后按下鼠标左键不放,移动 到矩形的另外一个对角点,释放鼠标左键,即可绘制出一个矩形。

4.4、 圆形

在【绘制】菜单中选择【圆形】功能,或者在工具栏上单击 圆形绘制首先在图形编辑区选择圆形的圆心,然后按下鼠标左键不放,移动圆形半径到指定 长度,释放鼠标左键,即可绘制出一个圆形。

4.5、多边形

在【绘制】菜单中选择【多边形】功能,或者在工具栏上单击 绘制模式。多边形绘制首先在图形编辑区选择多边形的中心点,然后按下鼠标左键不放,移 动到多边形指定大小,释放鼠标左键,即可绘制出一个多边形。

注意: 现在多边形只提供五边形的绘制。

4.6、椭圆

在【绘制】菜单中选择【椭圆】功能,或者在工具栏上单击 模式。椭圆绘制首先在图形编辑区选择椭圆的圆心,然后按下鼠标左键不放,移动到合适的 椭圆大小,释放鼠标左键,即可绘制出一个椭圆。

4.7、字符

字符暂不作详细说明。

4.8、定时器

定时器对象用来在程序执行的过程中,延时一段时间,用来设定被加工对象间的时间间 隔,或配合自动化生产线上其它设备工艺流程要求。

在【绘制】菜单下选择【定时器】子菜单,或者绘制工具栏中点击 后,在绘图空 间中单击鼠标左键,对象属性栏里出现一"定时器"对象,选择"定时器"对象,单击"对 按钮, 出现"定时器属性"对话框如下: 象属性"页下方的。

在定时器属性对话框中,可以设置定时器的等待时间,单位是毫秒。定时器提供位置 相关功能,在定时器属性对话框中,【启用位置】选项表示该对象是否和坐标位置相 关。选择此项后,程序运行到该对象时,平台会首先运动到对象在图纸中的坐标位置, 然后才开始执行该对象的功能: 如果不选择此项,程序将直接执行对象功能,该对象 不参与平台的轨迹运动。

4.9、输入控制器

输入控制器用于在程序执行过程中,等待指定输入端口的特定状态,满足触发条件后, 才继续下一段程序的执行,在自动化生产线中灵活运用输入端口的触发条件和输入关系,可 以提供复杂的逻辑控制功能,提高设备自动化程度。

4.9.1、绘制输入控制器

在图形编辑 在【绘制】菜单下选择【输入控制器】子菜单,或者工具栏中单击。

区单击鼠标左键,对象属性栏里出现一"输入控制器"对象,选择此对象,点击"对象属性" 页下方的 据性 按钮,则会出现"输入端口设置"对话框如下:

4.9.2、设置输入控制器

首先在对话框中选择触发方式,触发方式有两种: 电平触发和脉冲触发, 然后在指定输 入端口的编号下,点击选择触发条件:

- 电平模式: X 0 1 . 0 表示低电平触发, 1 表示高电平触发, X 表示不使用;
- 脉冲模式: x ↑ x , ↑表示下降沿脉冲触发, ↓表示上升沿脉冲触发。

输入控制器提供位置相关功能,在输入控制器属性对话框中,【启用位置】选项表示该 对象是否和坐标位置相关。选择此项后,程序运行到该对象时,平台会首先运动到对象在图 纸中的坐标位置, 然后才开始执行该对象的功能; 如果不选择此项, 程序将直接执行对象功 能,该对象不参与平台的轨迹运动。

4.9.3、多个输入控制器之间的关系

当使用电平触发方式时,可以同时定义多个输入端口,使用不同的触发条件,端口之间 的逻辑关系可以通过选择"与"或者"或"来定义。

当使用脉冲触发方式时,每个输入控制器次只能设置一个输入端口,若有多个脉冲模式 的输入端口,可以按照先后触发的逻辑关系,绘制多个输入控制器,分别设置其属性。

4.10、输出控制器

输出控制器用于在程序执行过程中,驱动指定输出端口到特定的状态,在自动化生产线 中,使用输出控制器输出状态,触发其它设备,完成复杂的逻辑控制功能,提高设备自动化 程度。

4.10.1、绘制输出控制器

在【绘制】菜单下选择【输出控制器】子菜单,或者在工具栏中点击 , 在图形编 辑区中单击鼠标左键,对象属性栏里出现一"输出控制器"对象,选择此对象,点击"对象 属性"页下方的 据性 按钮,则会出现"输出端口设置"对话框如下:

4.10.2、设置输出控制器

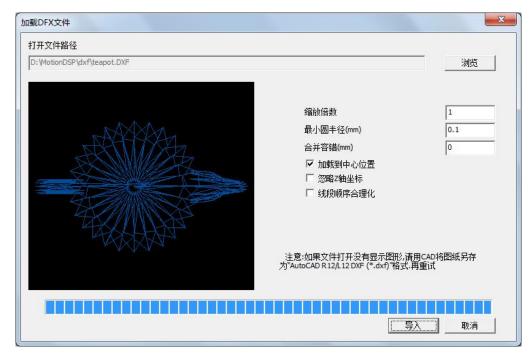
首先选择输出端口的信号类型,输出端口有两种信号类型:电平信号和脉冲信号:

- 电平模式: X 0 1,0表示输出低电平,1表示输出高电平,X标识不使用.
- 脉冲模式: Х ↑ Х, ↑表示输出上升沿脉冲, ↓输出下降沿脉冲。

输出控制器提供位置相关功能,在输出控制器属性对话框中,【启用位置】选项表示该 对象是否和坐标位置相关。选择此项后,程序运行到该对象时,平台会首先运动到对象在图 纸中的坐标位置,然后才开始执行该对象的功能;如果不选择此项,程序将直接执行对象功 能,该对象不参与平台的轨迹运动。

注意: 电平输出模式下可同时设置多个输出端口, 脉冲输出模式下每次只能设置一个输出端口, 若需要多个输出端口输出脉冲, 可以按照先后输出的逻辑关系, 绘制多个输出控制器, 分别设置其属性。

4.11、导入矢量文件


MotionDSP 软件可以绘制基本的几何图形,也可以导入其它专业工程制图软件绘制的复杂工件图纸,提高图纸通用性。

4.11.1、导入矢量

在【绘制】菜单下选择【输入矢量文件】子菜单,或者在工具栏中单击 , 软件会显示打开文件对话框如下:

找到矢量文件并选择,点击 1开(0) ,出现加载 DXF 文件对话框,如下:

设置各项参数,点击"导入",工件图形即显示在图形编辑区。

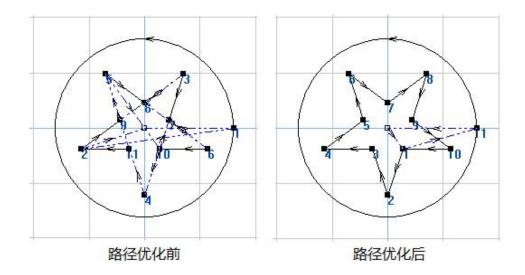
4.11.2、设置说明

- 【缩放倍数】: 原有的矢量文件中,一个图形单位代表多少毫米;
- 【加载到中心位置】:,勾选此项,加载的矢量图形中心点放置在图形编辑区坐标的原 点;如不勾选,则按加载矢量文件中图形的位置放在图形编辑区的相应位置;
- 【忽略 Z 轴坐标】:勾选此项,原有的三维图形将投影在 XY 坐标平面中;如不勾选, 则可以读入三维数据,运行时,按三维工作方式工作;
- 【最小圆半径(mm)】: 矢量文件中, 半径小于此数值的圆都会用点对象代替:

【线段顺序合理化】: 调整矢量文件中,组成连续线段的每条直线的起始点和方向,使得连 续线段运行顺序合理化,提高加工效率。

5、执行

单击菜单栏中的【执行】,即可打开执行菜单如下。图纸绘制完毕以后,需要编译和执 行,使用执行菜单里的功能,完成程序的编译和执行,也可以控制特定输出端口的状态。


5.1、路径优化

对于不同第三方绘图软件绘制的的矢量文件,由于软件兼容性等原因,或者由于绘制时 各种图形的先后顺序不同, 在导入矢量后, 往往会出现散乱的加工顺序, 无法形成最优的轨 迹路径。

MotionDSP 软件采用智能迭代算法,可以重新调整各个图形对象执行的先后顺序,形 成最优加工路径,加快单个工件加工速度,提高工作效率。

使用路径优化功能,需要先将图形集合分离成最小图形单位,然后在【执行】菜单下选 择【路径优化】子菜单、程序将自动重新排列对象列表顺序。

以下例子显示路径优化前后的执行顺序:

注意:【路径优化】功能只能自动排列图形对象的执行顺序,在执行此项功能前,需要人工对关键图形对象的起始点,加工方向进行大致调整后,然后执行路径优化功能。

5.2、预览

执行【预览】功能后,图形编辑区将显示整个加工路径,包括空走路径,方便用户调整。 其中,空走路径用黑色点划线表示。

5.3、编译

图形绘制完毕后,执行【编译】功能,软件将计算轮廓轨迹,速度参数、主轴参数,并 将计算后的结果编译转换成底层硬件执行代码,下载到板卡设备中。第一次加工或每次图形 修改后,都需要先执行【编译】功能,然后才能进行加工。

【编译】功能可以通过快捷键 F7 快速触发。

5.4、执行

执行编译好的机器代码,进行加工。单击【执行】后,图形编辑功能无法使用,也不能 切换到采集编程模式,图形编辑区将实时显示加工轨迹,其中十字光标显示当前运动平台坐 标位置,蓝色的光标表示激光未开启,红色的光标表示激光开启。

【执行】功能可以通过快捷键 F5 快速触发。

5.5、暂停

 停】后平台将降速停止,并保留暂停前的运行状态,在暂停结束后,可以继续运行完成后续加工任务。

【暂停】功能可以通过快捷键 F8 快速触发。

5.6、复位


【复位】功能重新初始化整个系统,停止运动平台,停止主轴输出,恢复到默认初始状态。该功能将破坏当前正在运行的程序,需谨慎使用,单击【复位】按钮时会出现以下对话框再次确认,以防止误操作:

【复位】功能可以通过快捷键 F4 快速触发。

5.7、定位

定位功能提供平台的基本控制操作,单击【定位】后,出现定位操作对话框如下:

【通过限位回图形原点】:工作台通过设定方向回到原点后,再次回到图形定义的原点,坐标显示(0,0,0,0);

【直接回图形原点】: 工作台由任一地方移动到图形定义的原点;

【回图形起始点】: 工作台运动到图形编辑区上第一个图形对象的起点位置。

5.8、激光

控制激光输出信号的开启和关闭,此功能一般用于测试,激光输出端口要根据外部电路 的情况做相应配置。

5.9、光闸

控制光闸输出信号的开启和关闭,此功能一般用于测试,光闸输出端口要根据外部电路 的情况做相应配置

5.10、气阀

控制气阀输出信号的开启和关闭,此功能一般用于测试,气阀输出端口要根据外部电路 的情况做相应配置。

5.11、指示

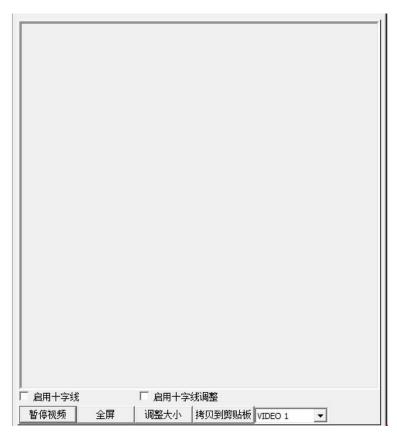
控制状态指示输出信号的开启和关闭,此功能一般用于测试,指示输出端口要根据外部电路 的情况做相应配置。

5.12、视频显示

如果 MotionDSP 软件所在计算机上安装有视频卡,CCD 摄像头的信号可以直接通过 同轴电缆连接到视频卡上,在 MotionDSP 的集成工作环境中实时显示出来。【视频】功能 用来打开和关闭视频监控画面的窗口。

5.13、边框检测

加工前需要预先知道工件的加工范围,以防止运动平台超限或加工范围超过物料,可以 使用边框检测功能, MotionDSP 软件将自动计算工件的边际, 使用空走速度绕边框模拟运 行一次, 快速检验加工范围。


6、工具

【工具】菜单提供设备参数设置、特殊控制工具等功能,菜单如下图所示:

6.1、视频显示

在【工具】菜单下选择【视频显示】,或者在工具栏上单击【视频】按钮,可以打开视 频显示窗口,实时采集 CCD 摄像头视频数据。视频显示窗口嵌入到主界面下:

【启用十字线】: 由系统软件生成十字线,叠加显示在 CCD 图像上,用于视频定位;

【启用十字线调整】: 调整视频十字线中心点位置;

【暂停视频】:冻结当前视频显示内容;

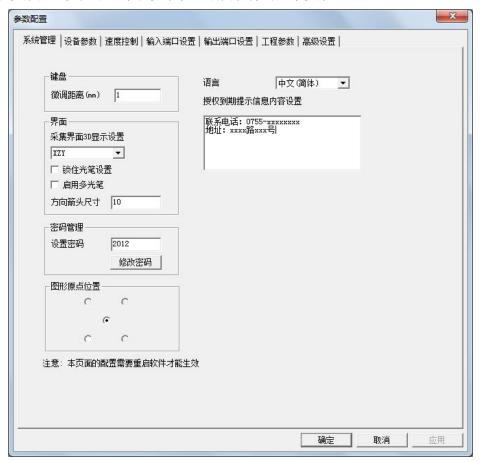
【全屏】: 全屏显示视频内容:

【调整大小】: 视频显示窗口可以修改其大小,使用鼠标拖动边框改变视频显示窗口大 小后,点击此按钮,视频显示内容将自动伸展到新修改的边框大小;

【拷贝到剪贴板】: 当前视频显示拍照,并将内容保存到剪贴板中;

【通道显示】: 对于有多路视频输入端口的视频卡,可以通过此选项选择当前显示的视 频通道。

6.2、参数配置


设备参数用来配置系统的全局参数,在【工具】菜单下选择【参数配置】,或者按 F2 快捷键,进入参数配置密码输入对话框如下:

正确输入密码后,进入参数配置界面。【参数配置】界面是一个多页对话框,可以看到它包括七个部分:【系统管理】、【设备参数】、【速度控制】、【输入端口设置】、【输出端口设置】、【工程参数】,【高级设置】,以下章节将逐一解释。

6.2.1、系统参数

系统参数配置页如下,系统参数设置绘图软件的基本参数:

【微调距离】: 在图形编辑区, 选中图形对象后, 使用计算机键盘方向键每按一次, 图形 对象移动的距离;

【锁住光笔设置】: 勾选后,在主界面的光笔设置将进入只读显示模式,不能修改,用来 防止在生产过程中误操作修改光笔的参数;

【启用多光笔】: 勾选后,在主界面的光笔参数中可以提供8支光笔,每支光笔可以定 义不同的工艺模式;不选择此项时,只有0号光笔可以使用。修改此选项需要重新启动软 件后才能生效:

【方向箭头像素】: 当图形编辑区处在"显示方向起点"模式的时候,该参数用来设置方 向箭头的大小。

【设置密码】: 进入参数配置、激光设置等页面时需要提供密码, 该参数用于密码修改设 置,该参数为空时表示没有密码,密码可以防止误操作修改各种参数;

【授权到期提示信息】: 当板卡授权日期过期后,此内容将显示在授权提示窗口上,一般 此信息设置为设备制造商联系地址和电话等信息;

【语言】: MotionDSP 提供多语言支持,该选项用于选择语言模式,修改此选项需要重 新启动软件后才能生效。

6.2.2、设备参数

设备参数是指机床设备的一些基本硬件参数设置,其界面如下:

丛枝	示 值	重置图形原	京点	尺轴	_		回零方式 4轴回零 (限)	
{	2	mm		Х	500	mm	二次回零回退	
(2	mm		Y	450	mm		— (IIII)
Z	2	mm		z	200	mm	10	
1	0.0000	deg					▼ AB工位模	式
.000		11.000.000					两轴双工位	_
零	速度	2402						
d	使能	方向	起始速度 (mm	/s)	运行速度(mm/s)	٦t	速度(mm/s^2)	
	▼ 使用	负	2		15	5		
	▼ 使用	正	2		15	5		
	▼ 使用	上 ▼	2		15	5		
	厂使用	顺	2		15	5		
参	数							
4	使能	脉冲当量 脉冲数/毫米	驱动脉冲模	式	指令脉冲逻辑电平	Ž	方向逻辑电平	
	▼ 使用	1000	脉冲方向		反相		同相	
	☑ 使用	1000	脉冲方向	1	反相		同相	
	▼ 使用	1250	脉冲方向	1	反相		同相	
	厂 使用	640	脉冲方向	Ī	反相		同相	旋转使能 恒转
		1~				-		

6.2.2.1、回零方式

【回零方式】: 这里回零指的是工作平台回机械原点,也就是机械参考点的过程。 MotionDSP 支持多种回零方式,目前支持的回零方式有

【回零 Z 轴优先(限位方式)】: 使用限位开关作为坐标轴零点信号传感器,回零时

候将先找寻限位开关的位置,然后根据定义图形原点,回零过程中, Z 轴首先单独 回零, 然后其它轴再同时回零;

【四轴回零(限位方式)】: 使用限位开关作为坐标轴零点信号传感器,回零时候将 先找寻限位开关的位置,然后根据定义图形原点,回零过程中四个轴同时回零;

【原点偏移】: 工作台各坐标轴回零过程中, 根据各轴零点信号传感器找到位置 后,需要稍微偏移一段距离,以防止信号传感器处于临界状态反复触发信号;

【二次回零回退距离】回零操作时候,为了消除运动惯性影响,提高定位精度,找寻零 点信号传感器的过程一般要分两次完成,一次是高速运行撞击到传感器后停止,然后回退一 段距离, 第二次低速运行再次撞击到传感器后停止。二次回零距离用来定义第二次回退的距 离,通过这个参数的调整,可以减少回零的时间。

【尺寸】: 定义平台幅面,该尺寸是在主界面下图形编辑区显示的尺寸,并不是各运动 轴的最大有效行程。

6.2.2.2 回零速度

曲	使能	方向	起始速度(mm/s)	运行速度(mm/s)	加速度(mm/s^2)
X	▼ 使用	负	▼ 2	20	50
Y	▼ 使用	正	▼ 2	20	50
Z	▼ 使用	E	2	20	50
A	▼ 使用	顺	▼ 0.5	20	50

MotionDSP 支持四个轴同时回零,可以分别根据每个轴的物理特性定义回零的方式和 速度。

【使能】: 勾选表示此轴参与回零操作,不勾选,表示此轴不参与回零操作;

【方向】: 方向参数表示零点信号传感器安装在轴的位置, 当执行回零操作的时候, 运 动平台将驱动坐标轴按此方向运动,搜寻传感器位置。

【起始速度】【运行速度】【加速度】用来定义回零操作时候,坐标轴运动的速度模型。

注意: 零点信号传感器需要安装在限位开关内侧, 回零操作的速度一般设置为较低速度, 以 提高找寻定位的精度。

6.2.2.3 轴参数

轴参数配置页面定义坐标轴的基础参数,轴参数界面如下:

【使能】: 勾选,则使用该轴,不勾选,则禁止该轴使用;

【脉冲当量】: 坐标轴运动单位距离需要发出的指令脉冲数,单位是"脉冲数/毫米";

【驱动脉冲模式】:每个坐标轴有两路输出信号,选择"脉冲方向"模式时,两路信号 分别是指令脉冲和方向信号,选择"脉冲脉冲"模式时,两路信号分别是正方向指令脉冲和 负方向指令脉冲;

【指令脉冲逻辑电平】: 设定第一路信号输出逻辑电平是否需要反相:

【方向逻辑电平】: 设定第二路信号输出逻辑电平是否需要反相。

6.2.3 速度控制

速度控制界面如下图:

【轴驱动速度】: 每个坐标轴的运动速度控制参数,当坐标轴运行在轴驱动模式下,使用 此参数作为运动模型参数;

【空走速度】: 当坐标轴运行在插补模式下,运动平台空走的速度,空走时主轴不输出激 光,因此空走速度一般设置为较高速度,以提高平台运行效率;

【拐角速度比】: 用于提高运动平台通过拐角时的平滑度, 在有拐角的地方, 需要降速的 最大速度,可以通过该百分比来切换调整,一般设置为50。

6.2.4、输入端口设置

输入端口设置界面如下:

【功能】: 每路输入端口既可以工作在通用输入端口模式下, 也可以工作在特殊功能模式 下,通过此参数选择输入端口的工作模式,输入端口特殊功能模式请参考对应运动控制卡的

【电平逻辑】: 外部输入电路有常开、常闭等方式,为了方便配合外部电路接线方式,

MotionDSP 对于每路输入端口都配置有反相器,可以通过设置是否,以改变有效电平逻辑;

【是否过滤】: 每路输入端口都配置有内部数字过滤器, 启用数字过滤器可以过滤输入信 号的抖动和毛刺,但是过滤信号也会降低信号触发的灵敏度;

【应用修改】:输入端口配置完毕后,需要单击"应用修改"按钮,配置参数才能生效;

【测试输入口】:单击测试输入口,将实时监控输入端口,通过每路输入端口后的小灯, 可以观察输入端口是否触发,绿色表示此输入端口为有效电平状态,红色表示此输入端口为 无效电平状态或没有使用,此功能一般用于调试。

6.2.5、输出端口设置

输出端口设置界面如下:

【功能】: 每路输出端口既可以工作在通用输出端口模式下,也可以工作在特殊功能模 式下,通过此项设置可以选择输出端口的工作模式;

【电平逻辑】: 每路输出端口都可以单独设置输出的有效电平逻辑以配合外部电路;

【初始电平】: 板卡加电启动,上位机软件尚未启动时候,端口的初始状态;

【测试输出】: 设备调试期间,可以通过测试输出功能设置输出端口的有效电平;

【应用修改】:输出端口配置完毕后,需要单击"应用修改"按钮,配置参数才能生效。

6.2.6、工程参数

工程参数定义需要配合工艺流程经常修改的系统参数,单击【工程参数】出现以下对话框

气阀 「气阀使能	工作开始延时(s) 工作结束延时(s)	0		
气阀模式 和激光同步 ▼ 开启延时(ms) 100	跳转延时 (ms) 换刀延时 (ms)	50 100		
关闭延时(ms) 100	启动方式	当前坐标值开始	•	
光闸	」 回位方式	回起点	<u> </u>	
▽ 光闸使能	工艺模式	焊接模式	_	
开启延时(ms) 100	脚踏触发			
关闭延时(ms) 100	輸入端口	6	•	
* 17	等待电平	上升沿		
指定点坐标————————————————————————————————————	一 上脚踏B工位 ———	21		
х о	輸入端口	7		
Υ 0	等待电平	上升沿		
Z 0))()			
A 0				

6.2.6.1、气阀

【气阀使能】: 勾选此项,气阀控制输出信号按设定的方式工作,不勾选此项,气阀控 制输出信号不工作;

【气阀模式】: 气阀模式选择"和激光同步", 气阀控制信号跟随激光开光信号工作, 如 果选择"始终维持",气阀控制信号在程序运行期间始终保持开启状态。

【开启延时】: 气阀需要提前开启,以保证激光开启时输出稳定气流覆盖工件表面;

【关闭延时】: 气阀需要延时关闭,以保证结束时工件冷却过程中输出稳定气流覆盖工 件表面:

注意: 气阀模式选择"和激光同步"时,如果两个连续激光开光信号之间的时间间 隔小于"关闭延时",气阀将持续打开不会关闭,这样可以提高加工速度。

6.2.6.2、光闸

☑ 光闸使能	
开启延时(ms)	100
关闭延时(ms)	100

【光闸使能】: 勾选此项,光闸控制输出信号按设定的方式工作,不勾选此项,光闸控 制输出信号不工作;

【开启延时】: 光闸需要提前开启,用以保证激光开光时光闸已完全打开,此项参数可 以为负数,表示激光开光时候,光闸仍处于关闭状态;

【关闭延时】: 光闸需要延时关闭,以保证激光可靠出光。

注意:如果两个连续激光开光信号之间的时间间隔小于"关闭延时",光闸将持续打 开不会关闭,这样可以提高加工速度。

6.2.6.3、工作延时

MotionDSP 提供一系列的延时参数,以配合加工工艺流程:

【工作开始延时】:程序执行前等待的时间,单位是"秒",一般用于物料更换或配合其 它设备工作;

【工作结束延时】: 程序执行完毕, 在启动下一次加工前, 必须等待的时间, 单位是"秒",

一般用于物料更换或配合其它设备工作;

【跳转延时】: 运动平台空走到下一次出激光前,需要等待的时间,防止机械抖动; 【换刀延时】: 同一图形文件加工时候,如果用到不同的光笔,在光笔切换的时候,需要加 入"换刀延时",以确保激光电源切换稳定输出。

6.2.6.4、工作模式

【工艺模式】: 此参数未使用,请缺省选择"焊接模式"; 【指定点坐标】: 此参数未使用:

【启动方式】:

- 当前位置开始:将当前平台的位置作为工件的起点,启动加工;
- 当前坐标值开始: 平台从当前位置运动到工件起点坐标所在的位置, 然后启动行加 \perp :

【回位方式】:

- 无:加工完毕后立即停止,平台没有回位操作;...
- 回指定点:加工完毕后,平台回到【指定点】所设定的坐标位置;

回起点:加工完毕后,平台回到加工启动时的初始位置;

【脚踏触发】:用来定义脚踏触发方式,选择脚踏开关接入的输入端口号,脚踏开关触

■ 上升沿触发

发方式有4种,分别是:


- 下降沿触发
- 高电平触发
- 低电平触发.

6.3、激光设置

【激光设置】用于主轴激光的参数设置.

6.3.1、激光参数

激光参数配置页界面如下:

【PWM 信号最高频率】: 可以设置 PWM 信号的最大值,此参数根据激光器的使用手册 设定;

【PWM 信号最低频率】: 可以设置 PWM 信号的最小值,此参数根据激光器的使用手册 设定;

【设置类型】:

占空比: 勾选,表示激光光笔设置里面使用占空比调节激光输出参数

脉宽: 勾选,表示激光光笔设置里面使用脉宽调节激光输出参数

【电源控制类型】: 选择激光器电源的控制类型

【电源编码最大值】: 如果是编码器控制的激光电源,则该值填编码最大支持的数值.

【锁存信号】:如果输出口设置编码激光功率的,则该选项选择锁存编码值需要的输出信号和时间.

【功率和占空比约束】: 如果激光器对功率和占空比有约束条件的话该表可以自定义约束表,这样如果在设置激光功率参数的时候,如果不满足条件,软件将会做出提示.

7、视图

单击菜单中的【视图】,即可打开视图菜单功能。视图菜单主要功能是:

- 主工作区模式切换,主工作区可以工作在"图形编辑"模式或"采集编程"模式下;
- 控制主界面上各视图的显示和关闭,这些视图有:控制工具栏、状态栏、控制管理 栏、对象属性栏的显示;
- 在图形编辑模式下,放大缩小工作区域。

【视图】菜单的界面如下:

7.1、对象属性栏

对象属性栏位于主界面的左边,对象属性栏显示图形对象列表,并可以对图形对象的属 性进行设置。对象属性栏的界面如下:

7.1.1、图形对象列表

深圳市铭镭激光设备有限公司 SHENZHEN HEROLASER EQUIPMENT CO.,LTD

地址:深圳市宝安区福永镇立新路2号

电话: 0755-29191116 传真: 0755-29191100

网址: www.herolaser.com 52 全国免费咨询热线: 400-6899-119

对象属性栏中对象列表和图形编辑区的图形对象——对应,选中后呈暗色背景,可以通过鼠标拖拽,或者 Ctrl-鼠标左键同时选择多个对象。

单击选中某个图形对象,按鼠标右键可以上下移动图形对象,改变图形对象在列表中的位置,也可以通过删除功能删除该对象。双击图形对象,出现对话框,可以在此修改对象名称。

7.1.2、基准坐标

每个图形对象都有一点作为其参考点,该基准点在图形变化、移动的时候作为基准点使用,选择图形对象后单击【基准坐标】按钮,出现以下对话框:

7.1.3、属性修改

- 【位置】: 是指基准点的坐标值,修改"位置"值可以精确移动图形对象;
- 【尺寸】: 图形对象在 X,Y 轴上的最大尺寸,修改"尺寸"值可以改变图形对象的大小;

【等比例】: 勾选此项时,修改图形对象的尺寸, X/Y 按同比例变化, 变化后的图形形 状不变,不勾选此项时,修改图形对象尺寸,X/Y尺寸独立变化,变化后图形形状可能发生 改变;

【虚线模式】: 勾选此项, 在加工的时候, 该图形对象按虚线方式断续出光, 其断续比 在当前笔号的高级设置中定义,不勾选此项,加工时正常出光;

【变更方向】: 单击此按钮,可以改变图形对象加工时进刀的方向,如果要查看当前方 向,请勾选控制面板右下方的【显示方向起点】;

【变更起点】: 单击此按钮,可以改变图形对象加工时的起始点,如果要查看当前方向, 请勾选控制面板右下方的【显示方向起点】:

【应用】: 改变位置,尺寸,等比例,虚线模式等操作后,需要点击应用按钮,这些参 数设置才能有效。

7.1.4、变换

【变换】是指对图形对象的高级编辑功能,分为【旋转】、【移动】、【镜像】三种。单击【变 换】按钮,出现几何变换对话框.

7.1.4.1、旋转

以基准点为旋转中心,按设定的角度旋转,正数为逆时针旋转,负数为顺时针旋转,单击【应用】按钮后实现旋转变换。

7.1.4.2、移动

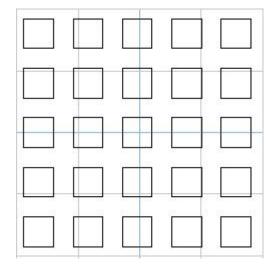
单击应用按钮后,以基准点为参考点,以 X, Y 数值为相对位移量移动图形对象,正数表示 向正方向移动,负数表示向负方向移动。

7.1.4.3、镜像

镜像分为垂直镜像和水平镜像,单击【应用】按钮后,以基准点所在的 X 或 Y 轴为基准轴, 实现对图形的镜像变换。

7.1.5、属性

图形对象列表中某些图形对象,不仅有坐标等简单的属性,还包含有复杂的特有的对象 属性,可以使用【属性】功能显示和修改,例如对于"定时器"对象,单击后显示以下对象 属性修改对话框:


7.1.6、阵列

MotionDSP 支持大量重复绘制某一特定图形,以提高图形输入的效率,【阵列】功能可按定义的阵列生成方式,生成图形阵列,下面以示例的方式演示阵列功能。

- 1) 首先在图形编辑区绘制一个正方形;
- 2) 在对象属性栏中选择此对象;
- 3) 单击【阵列】,填写参数如

4) 单击确定,生成后的图形如下:

7.2、光笔参数栏

光笔参数栏存放 8 组光笔参数, 绘图的时候根据选择的光笔不同, 用不同的颜色区分 图形对象所用的光笔编号。

光笔参数主要定义图形对象的加工工艺参数,例如运动速度、激光功率等,光笔参数分 为基本参数设置和高级参数设置。

7.2.1、光笔基本参数

光笔基本参数栏放置在主界面的最左侧,和对象属性栏共用同一位置。参数显示如下:

光笔基本参数如下:

【启动速度】: 设置运动平台的起始速度,对于步进电机而言,启动速度太快无法正常 启动容易丢步,启动速度的设置要参考电机说明;

【加工速度】: 图形正常加工时的行进速度;

【加速度】: 电机运行的加速加速度,加速度越大,速度上升越快,抖动也越大,加速度需要设置为一合理数值,在满足加工工艺要求下,尽量缩短加速时间提高效率;

【减速度】: 电机减速阶段的减速加速度;

【开光延时】: 开光延时为正值时,表示先打开激光,经过一段延时后平台开始运动, 开光延时为负值时,表示平台先运动,经过一段延时后再打开激光;

【关光延时】: 如果关闭激光前平台在运动,当平台运动停止后,经过一段延时再关闭激光:

【功率】: 设置激光功率,对于只有开光信号控制的激光电源,此参数无效。

【频率】: 设置激光频率,对于只有开光信号控制的激光电源,此参数无效。

【脉宽】: 设置激光脉宽,对于只有开光信号控制的激光电源,此参数无效。

【占空比】: 设置激光占空比,对于只有开光信号控制的激光电源,此参数无效。

7.2.2、光笔高级参数设置

打点时间(ms)	0.000
拐角延时(ms)	0
结束延时(ms)	0
虚线模式	
实线长度(mm)	1
间隔长度(mm)	1
最大功率	0
最大脉宽(us)	0.1
最大占空比	100
电源编码	0

【打点时间】:设置"点"对象输出激光的持续时间;

【拐角延时】:运动轨迹经过拐角速度减速为0时,需要暂停一下,以消除机械抖动;

【结束延时】: 如果关闭激光后平台需要空走一段距离,需要经过一段延时后,平台才开始空走运动:

【虚线模式】:当图形对象选择虚线模式后,此参数用于定义虚线模式下断续出光的长度。

【最大功率】: 设置激光最大功率,对于只有开光信号控制的激光电源,此参数无效。如果该数值大于光笔参数的功率,则功率将会跟随速度变化.

【最大脉宽】: 设置激光最大脉宽,对于只有开光信号控制的激光电源,此参数无效。如果该数值大于光笔参数的脉宽,则脉宽将会跟随速度变化.

【最大占空比】: 设置激光最大占空比,对于只有开光信号控制的激光电源,此参数无效。如果该数值大于光笔参数的占空比,则占空比将会跟随速度变化.

【电源编码】: 设置激光编码值,只有对用编码调节激光输出功率的激光器有用。

7.3、控制面板

控制面板用于实时监控运动平台的工作状态,手动控制平台运动,设置加工参数等功能。 控制面板位于主界面最右侧:

【单件】: 显示单次加工工件所用时间,是运动平台运动时间,精确到毫秒;

【总时间】: 累计加工所用时间总和,包括运动平台运动时间以及程序调用检测时间等, 精确到秒;

【工作进度】: 单次加工当前工作进度,以百分比形式显示;

【重复加工】: 勾选此项,加工完毕后将再次启动加工任务,直到已加工次数不小于加 工次数为止:

【清零】: 复位单件、总时间和已加工次数, 复位后上述值为 0;

【步进-距离】: 勾选此项, 在轴驱动的时候每执行一次, 轴运动指定距离后立刻停止, 不勾选此项,按动轴驱动后轴一直运动,直到释放按键后减速停止;

【模拟加工】: 勾选此项,运行在模拟加工状态,运动平台按图形轨迹正常运动,但出 光信号、光闸和气阀都处于关闭状态:

【脚踏触发】: 勾选此项,将激活脚踏开光触发方式,系统实时检测脚踏输入端口是否 有触发信号到来:

【显示方向起点】: 勾选此项,图形编辑区中图形对象将显示加工方向和起始点位置, 不勾选此项,图形编辑区将只显示图形本身;

【选择零件加工】: 勾选此项,系统只编译执行选定的图形对象,不勾选此项,系统将 编译执行所有出现在对象属性列表中的图形对象。

深圳市铭镭激光设备有限公司

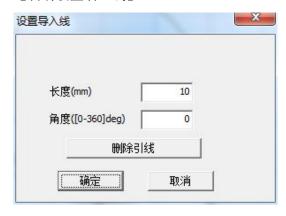
地址,深圳市宝安区福永镇立新路2号

网址: www.herolaser.com

7.4、右键快键菜单

在图形编辑区点击鼠标右键,将出现以下快捷菜单:

【设置起点】: 使用"显示方向起点"模式查看图形的时候,可以看到图形对象的各个 节点,将鼠标箭头移至某个节点之上,选择"设置起点"功能,可将该节点设置为图形对象 的起始点:


【图形起点移动到当前坐标】: 选择此功能在图形编辑区移动选定的图形对象,移动后 图形对象的起始点为当前坐标值;

【消除图集间隙】: DXF 矢量图形导入后,图形对象的顺序有可能是乱序排列,例如一

个正方形,它的4条边不是按顺序排列的,使用此功能可以重新按顺序依次连接各图形对 象,避免中间出现没有意义的空走,影响工件加工效率;

【平台移动到本节点】:使用"显示方向起点"模式查看图形的时候,可以看到图形对 象的各个节点,将鼠标箭头移至某个节点之上,选择"平台移动到本节点"功能,运动平台 将自动移动到当前节点所在的坐标位置。

【自动设置引入线】:

设置好长度和角度,系统将自动对该选中对象生成导入线

【手动设置引入线】: 点击该选项,然后你在图形界面任意一点点击一下鼠标左键,则软

件会自动将该点和图形起点连接起来,生成一条引入线.

【指定为内模】: 设置选中的图形对象为内模对象 【指定为外模】: 设置选中的图形对象为外模对象

【设置 Z 轴值】: 设置选中的图形对象的 Z 轴坐标值

【设置 A 轴值】: 设置选中的图形对象的 A 轴坐标值

8、帮助

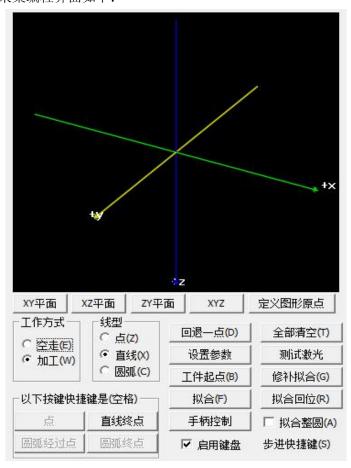
【帮助】菜单用来显示软件、运动控制卡的版本信息,提供板卡加密授权功能等,帮助菜单如下:

8.1、授权

有关 MotionDSP 的加密授权方面的信息,请参考文档《PMC3100V1R3 加密授权说明书》。

8.2、版本信息

选择【关于 MotionDSP(A)...】将显示版本信息提示框如下:


其中板卡序号是板卡唯一身份标志。

9、采集编程

对于加工轨迹是复杂的多维空间曲线,采用传统的图形绘制和数控编程难度十分巨大,在这种情况下可以采用"采集编程"模式。"采集编程"模式,对实际加工工件的关键节点坐标进行采集,获取若干离散的拟合点,然后通过数值计算将这些点序列拟合成一条连续的空间曲线,以逼近真实加工零件的轨迹。

9.1、采集和拟合

MotionDSP 软件提供功能强大,操作简单的采集编程功能,单击【采集编程】,即可将 主工作区切换到采集编程界面如下:

【平面选择】: 采集编程模式提供 3D 方式的模拟显示窗口,可以直观的查看采集的坐

标所形成的空间轨迹。模拟显示窗口正下面有一排"平面选择"按钮,用来切换 3D 坐标系 的方向, 方便从不同的视角观察空间曲线, 用户也可以通过鼠标拖拽的方式调整坐标系的方 向。

【定义图形原点】:点击该按键能将当前运动平台所在位置定义成图形编辑区坐标原点:

【工作方式】: 当前采集和拟合的线条是空走方式,还是出光方式,在 3D 模拟显示窗 口中, 白色的线条代表空走方式, 红色的线条代表出光方式;

【回退一点】: 删除最后一个采样点,平台自动退回到最后一次采样前的位置:

【全部清空】: 删除所有采样点;

【测试激光】: 单击输出激光,一般用于调试目的:

【工件起点】:设置当前位置为工件起点,这样采集的新对象以这个起点开始计算;

【回起点】: 平台运动到设置的工件起点位置;

【拟合】: 将采集拟合好的对象添加到对象列表, 适合分段采集拟合;

【拟合回位】: 拟合后编译下载程序,同时平台自动回位到起点位置,准备加工;

【修补拟合】: 将采集拟合好的对象添加到对象列表,并和下一段图形自动连接;

【启用键盘操作】: 勾选后可以使用键盘快捷键方式操作平台:

【设置参数】: 单击设置参数按钮,将弹出光笔编号输入对话框,用来选择示教编程拟 合时使用的光笔:

【拟合整圆】:勾选此项,使用圆弧拟合的时候,三点拟合成一个整圆,不勾选此项, 三点拟合成一段圆弧。

采集编程一般需要视频监控和红光指示配合,方便快速精确定位采样点。

9.2、快捷键操作

采集编程支持全键盘快捷操作,选择【启用键盘操作】功能后,各个主要的功能均可使 用键盘快捷键操作, 按钮的名字后面都有快捷键的提示。另外, 平台运动也可以使用键盘方 式,平台运动的快键键是:

全局快捷键				
快捷键	功能	备注		
F4	复位			
F8	暂停			

采集界面(勾选【启用键盘方式】后才有效)				
快捷键	功能	备注		
←	X轴向负方向运动			
→	X轴向正方向运动			

 	Y轴向正方向运动	
↓	Y轴向负方向运动	
End	A 轴向负方向运动	
Home	A 轴向正方向运动	
PgUp	Z轴向正方向运动	
PgDn	2 轴向负方向运动	
Е	设置空走输出	
W	设置加工输出	
Z	设置拟合线型为点	
X	设置拟合线型为直线	
С	设置拟合线型为圆弧	
空格/Enter	插入点	如果[点]按键是有效的
空格/Enter	插入直线	如果[直线]按键是有效的
空格/Enter	插入圆弧经过点	如果[圆弧经过点]是有效的
空格/Enter	插入圆弧终点	如果[圆弧终点]是有效的
D	回退一点	
Т	全部清空	
В	工件起点	
G	修补拟合	
F	拟合	
R	拟合回位	
S	切换轴单步/连续运动	
A	拟合为整圆	